This notebook contains a set of analyses for the selected user’s boardgamegeek collection. The bulk of the analysis is focused on building a user-specific predictive model to predict the games that tulkas is likely to own. This enables to ask questions like, based on the games the user currently owns, what games are a good fit for their collection? What upcoming games are they likely to purchase?
This analysis is based on data from BoardGameGeek that was last updated on 2021-12-20.
We can look at a basic description of the number of games that the user owns, has rated, has previously owned, etc.
What years has the user owned/rated games from? While we can’t see when a user added or removed a game from their collection, we can look at their collection by the years in which their games were published.
We can look at the most frequent types of categories, mechanics, designers, and artists that appear in a user’s collection.
We’ll examine a predictive model trained on a user’s collection for games published through 2019. How many games has the user owned/rated/played in the training set (games prior to 2019)?
username | dataset | period | games_owned | games_rated | games_played |
tulkas | training | published before 2020 | 247 | 0 | 247 |
tulkas | test | published 2020 or later | 263 | 0 | 263 |
There are two main (binary) outcomes we will be modeling for the user.
The first, own refers to whether the user currently lists a game as owned in their collection. The second, played refers to whether the user currently owns, has rated, or previously owned a game. This means the latter will generally have a larger list of games, but may still be a useful category to examine for people who play lots of games without necessarily owning them.
We will train predictive models to learn the probability that the user will own or play individual games based on their features.
We can examine coefficients from the trained modes, which are penalized logistic regressions fit to our two main outcomes. Positive values indicate that a feature increases a user’s probabilility of owning/rating a game, while negative values indicate a feature decreases the probability.
Why did the model identify these features? We can make density plots of the important features for predicting whether the user owned a game. Blue indicates the density for games owned by the user, while grey indicates the density for games not owned by the user.
Binary predictors can be difficult to see with this visualization, so we can also directly examine the percentage of games in a user’s collection with a predictor vs the percentage of all games with that predictor.
% of Games with Feature | ||||
username | Feature | In_Collection | All_Games | Ratio |
tulkas | Income | 5.7% | 0.6% | 9.9 |
tulkas | Drafting | 5.7% | 0.9% | 6.3 |
tulkas | Solo Solitaire Game | 30.8% | 5.1% | 6.0 |
tulkas | Print Play | 7.3% | 1.8% | 4.1 |
tulkas | Communication Limits | 3.6% | 0.9% | 4.0 |
tulkas | Eaglegryphon Games | 4.5% | 1.5% | 3.0 |
tulkas | Asmodee | 12.6% | 5.2% | 2.4 |
tulkas | ZMan Games | 8.1% | 3.4% | 2.4 |
tulkas | Pegasus Spiele | 9.7% | 4.6% | 2.1 |
tulkas | Card Drafting | 23.5% | 11.6% | 2.0 |
tulkas | Economic | 17.0% | 9.8% | 1.7 |
tulkas | Trains | 3.6% | 2.2% | 1.7 |
tulkas | Puzzle | 4.9% | 3.3% | 1.5 |
tulkas | City Building | 6.5% | 4.2% | 1.5 |
tulkas | Word Game | 2.4% | 1.8% | 1.4 |
tulkas | Prehistoric | 1.2% | 1.0% | 1.2 |
tulkas | Medieval | 6.9% | 6.3% | 1.1 |
tulkas | Party Game | 8.5% | 8.5% | 1.0 |
tulkas | Trivia | 1.6% | 1.8% | 0.9 |
tulkas | Action Dexterity | 4.0% | 4.8% | 0.8 |
tulkas | Area Majority Influence | 7.3% | 11.2% | 0.6 |
tulkas | Horror | 2.4% | 4.0% | 0.6 |
tulkas | Mafia | 0.4% | 0.7% | 0.6 |
tulkas | Negotiation | 1.6% | 3.7% | 0.4 |
tulkas | Racing | 0.8% | 2.9% | 0.3 |
Before predicting games in upcoming years, we can examine how well the model did and what games it liked in the training set. In this case, we used resampling techniques (cross validation) to ensure that the model had not seen a game before making its predictions.
An easy way to examine the performance of classification model is to view a separation plot. We plot the predicted probabilities from the model for every game (from resampling) from lowest to highest. We then overlay a blue line for any game that the user does own. A good classifier is one that is able to separate the blue (games owned by the user) from the white (games not owned by the user), with most of the blue occurring at the highest probabilities (right side of the chart).
We can display this information in table form, displaying the 100 games with the highest probability of ownership, adding a blue line when the user does own the game.
username | yearpublished | game_id | name | pred_played | pred_own | actual_played | actual_own |
tulkas | 2018 | 244711 | Newton | 0.71 | 0.71 | 0 | 0 |
tulkas | 2019 | 281259 | The Isle of Cats | 0.43 | 0.43 | 1 | 1 |
tulkas | 2009 | 39683 | At the Gates of Loyang | 0.43 | 0.43 | 0 | 0 |
tulkas | 2017 | 174430 | Gloomhaven | 0.41 | 0.41 | 0 | 0 |
tulkas | 2015 | 181687 | The Pursuit of Happiness | 0.38 | 0.38 | 0 | 0 |
tulkas | 2016 | 72321 | The Networks | 0.38 | 0.38 | 0 | 0 |
tulkas | 2019 | 283863 | The Magnificent | 0.37 | 0.37 | 0 | 0 |
tulkas | 2016 | 167791 | Terraforming Mars | 0.37 | 0.37 | 1 | 1 |
tulkas | 2016 | 177736 | A Feast for Odin | 0.36 | 0.36 | 0 | 0 |
tulkas | 2016 | 200680 | Agricola (Revised Edition) | 0.35 | 0.35 | 0 | 0 |
tulkas | 2019 | 286096 | Tapestry | 0.35 | 0.35 | 1 | 1 |
tulkas | 2019 | 276025 | Maracaibo | 0.34 | 0.34 | 0 | 0 |
tulkas | 2018 | 199792 | Everdell | 0.31 | 0.31 | 1 | 1 |
tulkas | 2019 | 270971 | Era: Medieval Age | 0.29 | 0.29 | 1 | 1 |
tulkas | 2019 | 283393 | Aquatica | 0.29 | 0.29 | 0 | 0 |
tulkas | 2014 | 159675 | Fields of Arle | 0.28 | 0.28 | 1 | 1 |
tulkas | 2010 | 73439 | Troyes | 0.28 | 0.28 | 0 | 0 |
tulkas | 2019 | 251247 | Barrage | 0.28 | 0.28 | 0 | 0 |
tulkas | 2005 | 17133 | Railways of the World | 0.26 | 0.26 | 0 | 0 |
tulkas | 2017 | 188920 | This War of Mine: The Board Game | 0.26 | 0.26 | 0 | 0 |
tulkas | 2018 | 260428 | Pandemic: Fall of Rome | 0.26 | 0.26 | 1 | 1 |
tulkas | 2013 | 140620 | Lewis & Clark: The Expedition | 0.25 | 0.25 | 0 | 0 |
tulkas | 2016 | 192312 | Mr. Cabbagehead's Garden | 0.24 | 0.24 | 1 | 1 |
tulkas | 2014 | 154203 | Imperial Settlers | 0.24 | 0.24 | 0 | 0 |
tulkas | 2018 | 218121 | Dice Hospital | 0.24 | 0.24 | 0 | 0 |
tulkas | 2018 | 222509 | Lords of Hellas | 0.24 | 0.24 | 0 | 0 |
tulkas | 2017 | 220308 | Gaia Project | 0.24 | 0.24 | 1 | 1 |
tulkas | 2017 | 209778 | Magic Maze | 0.24 | 0.24 | 0 | 0 |
tulkas | 2011 | 96848 | Mage Knight Board Game | 0.23 | 0.23 | 0 | 0 |
tulkas | 2019 | 196257 | Castle Itter | 0.22 | 0.22 | 1 | 1 |
tulkas | 2014 | 158882 | Elevenses for One | 0.22 | 0.22 | 0 | 0 |
tulkas | 2019 | 283294 | Yukon Airways | 0.22 | 0.22 | 0 | 0 |
tulkas | 2019 | 284825 | Florenza Dice Game | 0.22 | 0.22 | 0 | 0 |
tulkas | 2017 | 193728 | Pendragon: The Fall of Roman Britain | 0.22 | 0.22 | 0 | 0 |
tulkas | 2015 | 168435 | Between Two Cities | 0.22 | 0.22 | 0 | 0 |
tulkas | 2016 | 156858 | Black Orchestra | 0.22 | 0.22 | 1 | 1 |
tulkas | 2016 | 199269 | 1572: The Lost Expedition | 0.21 | 0.21 | 0 | 0 |
tulkas | 2017 | 228570 | Raging Bulls | 0.21 | 0.21 | 0 | 0 |
tulkas | 2019 | 285984 | Last Bastion | 0.21 | 0.21 | 0 | 0 |
tulkas | 2017 | 216132 | Clans of Caledonia | 0.21 | 0.21 | 0 | 0 |
tulkas | 2019 | 264220 | Tainted Grail: The Fall of Avalon | 0.21 | 0.21 | 0 | 0 |
tulkas | 2007 | 31260 | Agricola | 0.21 | 0.21 | 0 | 0 |
tulkas | 2010 | 62227 | Labyrinth: The War on Terror, 2001 – ? | 0.20 | 0.20 | 0 | 0 |
tulkas | 2016 | 191387 | Star Trek: The Dice Game | 0.20 | 0.20 | 0 | 0 |
tulkas | 2017 | 237031 | D100 Dungeon | 0.20 | 0.20 | 0 | 0 |
tulkas | 2017 | 199561 | Sagrada | 0.20 | 0.20 | 1 | 1 |
tulkas | 2012 | 121921 | Robinson Crusoe: Adventures on the Cursed Island | 0.20 | 0.20 | 1 | 1 |
tulkas | 2019 | 271324 | It's a Wonderful World | 0.20 | 0.20 | 1 | 1 |
tulkas | 2015 | 171273 | FUSE | 0.20 | 0.20 | 0 | 0 |
tulkas | 2004 | 10660 | Micropul | 0.19 | 0.19 | 0 | 0 |
tulkas | 2014 | 163412 | Patchwork | 0.19 | 0.19 | 1 | 1 |
tulkas | 2016 | 197097 | Four Against Darkness | 0.19 | 0.19 | 0 | 0 |
tulkas | 2017 | 231854 | Twin Stars: Adventure Series I | 0.19 | 0.19 | 0 | 0 |
tulkas | 2018 | 255360 | Bargain Basement Bathysphere | 0.19 | 0.19 | 0 | 0 |
tulkas | 2016 | 176083 | Hit Z Road | 0.19 | 0.19 | 0 | 0 |
tulkas | 2015 | 180593 | The Bloody Inn | 0.19 | 0.19 | 0 | 0 |
tulkas | 2019 | 257066 | Sierra West | 0.19 | 0.19 | 0 | 0 |
tulkas | 2018 | 247763 | Underwater Cities | 0.19 | 0.19 | 0 | 0 |
tulkas | 2008 | 37380 | Roll Through the Ages: The Bronze Age | 0.19 | 0.19 | 0 | 0 |
tulkas | 2019 | 244099 | Herbaceous Sprouts | 0.19 | 0.19 | 0 | 0 |
tulkas | 2018 | 245928 | Pax Emancipation | 0.19 | 0.19 | 0 | 0 |
tulkas | 2016 | 194298 | Expedition: The Roleplaying Card Game | 0.19 | 0.19 | 0 | 0 |
tulkas | 2011 | 100901 | Flash Point: Fire Rescue | 0.19 | 0.19 | 0 | 0 |
tulkas | 2019 | 253574 | Crusader Kings | 0.19 | 0.19 | 0 | 0 |
tulkas | 2019 | 266192 | Wingspan | 0.19 | 0.19 | 1 | 1 |
tulkas | 2012 | 128271 | Ginkgopolis | 0.19 | 0.19 | 0 | 0 |
tulkas | 2008 | 38453 | Space Alert | 0.19 | 0.19 | 0 | 0 |
tulkas | 2018 | 239464 | Palm Island | 0.18 | 0.18 | 1 | 1 |
tulkas | 2015 | 182260 | Agent Decker | 0.18 | 0.18 | 0 | 0 |
tulkas | 2008 | 34639 | The Dungeon of D | 0.18 | 0.18 | 1 | 1 |
tulkas | 2016 | 207242 | Pentaquark | 0.18 | 0.18 | 0 | 0 |
tulkas | 2019 | 169427 | Middara: Unintentional Malum – Act 1 | 0.18 | 0.18 | 0 | 0 |
tulkas | 2019 | 238992 | Call to Adventure | 0.18 | 0.18 | 1 | 1 |
tulkas | 2018 | 262215 | Blackout: Hong Kong | 0.18 | 0.18 | 0 | 0 |
tulkas | 2006 | 21241 | Neuroshima Hex! 3.0 | 0.18 | 0.18 | 0 | 0 |
tulkas | 2018 | 251658 | Sprawlopolis | 0.18 | 0.18 | 1 | 1 |
tulkas | 2016 | 205398 | Citadels | 0.18 | 0.18 | 0 | 0 |
tulkas | 2015 | 163967 | Tiny Epic Galaxies | 0.18 | 0.18 | 0 | 0 |
tulkas | 2016 | 199242 | Mini Rogue: A 9-Card Print-and-Play Game | 0.17 | 0.17 | 0 | 0 |
tulkas | 2018 | 247236 | Duelosaur Island | 0.17 | 0.17 | 0 | 0 |
tulkas | 2010 | 75223 | Utopia Engine | 0.17 | 0.17 | 0 | 0 |
tulkas | 2018 | 225885 | Unbroken | 0.17 | 0.17 | 0 | 0 |
tulkas | 2018 | 245487 | Orchard: A 9 card solitaire game | 0.17 | 0.17 | 1 | 1 |
tulkas | 2019 | 278297 | Choose Your Own Adventure: War with the Evil Power Master | 0.17 | 0.17 | 0 | 0 |
tulkas | 1978 | 1773 | Dawn of the Dead | 0.17 | 0.17 | 0 | 0 |
tulkas | 2015 | 172081 | Burgle Bros. | 0.17 | 0.17 | 0 | 0 |
tulkas | 2016 | 191189 | Aeon's End | 0.17 | 0.17 | 0 | 0 |
tulkas | 2015 | 125153 | The Gallerist | 0.17 | 0.17 | 1 | 1 |
tulkas | 2019 | 265736 | Tiny Towns | 0.17 | 0.17 | 0 | 0 |
tulkas | 2018 | 232666 | Robin Hood and the Merry Men | 0.17 | 0.17 | 0 | 0 |
tulkas | 2013 | 136063 | Forbidden Desert | 0.17 | 0.17 | 0 | 0 |
tulkas | 2019 | 256960 | Pax Pamir: Second Edition | 0.17 | 0.17 | 1 | 1 |
tulkas | 2016 | 169786 | Scythe | 0.17 | 0.17 | 1 | 1 |
tulkas | 2019 | 254588 | Hearts and Minds: Vietnam 1965-1975 (Third Edition) | 0.16 | 0.16 | 0 | 0 |
tulkas | 2010 | 71836 | Onirim | 0.16 | 0.16 | 0 | 0 |
tulkas | 2017 | 216865 | Sherman Leader | 0.16 | 0.16 | 0 | 0 |
tulkas | 2015 | 183571 | Deep Space D-6 | 0.16 | 0.16 | 1 | 1 |
tulkas | 2019 | 283792 | SpaceShipped | 0.16 | 0.16 | 0 | 0 |
tulkas | 2015 | 171431 | The Maiden in the Forest | 0.16 | 0.16 | 0 | 0 |
tulkas | 2018 | 171964 | The Order of Vampire Hunters | 0.16 | 0.16 | 0 | 0 |
We can also more formally assess how well the model did in resampling by looking at the area under the receiver operating characteristic. A perfect model would receive a score of 1, while a model that cannot predict the outcome will default to a score of 0.5. The extent to which something is a good score depends on the setting, but generally anything in the .8 to .9 range is very good while the .7 to .8 range is perfectly acceptable.
username | outcome_type | .metric | .estimator | .estimate |
tulkas | own | roc_auc | binary | 0.765 |
tulkas | played | roc_auc | binary | 0.765 |
Another way to think about the model performance is to view its lift, or its ability to detect the positive outcomes over that of a null model. High lift indicates the model can much more quickly find all of the positive outcomes (in this case, games owned or played by the user), while a model with no lift is no better than random guessing.
What games does the model think tulkas is most likely to own that are not in their collection?
username | yearpublished | game_id | name | pred_own | actual_own |
tulkas | 2018 | 244711 | Newton | 0.71 | 0 |
tulkas | 2009 | 39683 | At the Gates of Loyang | 0.43 | 0 |
tulkas | 2017 | 174430 | Gloomhaven | 0.41 | 0 |
tulkas | 2015 | 181687 | The Pursuit of Happiness | 0.38 | 0 |
tulkas | 2016 | 72321 | The Networks | 0.38 | 0 |
What games does the model think tulkas is least likely to own that are in their collection?
username | yearpublished | game_id | name | pred_own | actual_own |
tulkas | 1900 | 521 | Crokinole | 0.00 | 1 |
tulkas | 1904 | 13123 | 500 | 0.01 | 1 |
tulkas | 2005 | 15126 | Advanced Squad Leader: Starter Kit #2 | 0.02 | 1 |
tulkas | 2007 | 20542 | Advanced Squad Leader: Starter Kit #3 | 0.02 | 1 |
tulkas | 2008 | 34747 | Jena 20 | 0.02 | 1 |
Top 25 games most likely to be owned by the user in each year, highlighting in blue the games that the user has owned/played.
rank | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
1 | Mage Knight Board Game | Robinson Crusoe: Adventures on the Cursed Island | Lewis & Clark: The Expedition | Fields of Arle | The Pursuit of Happiness | The Networks | Gloomhaven | Newton | The Isle of Cats |
2 | Flash Point: Fire Rescue | Ginkgopolis | Forbidden Desert | Imperial Settlers | Between Two Cities | Terraforming Mars | This War of Mine: The Board Game | Everdell | The Magnificent |
3 | Octopus's Garden | Escape: The Curse of the Temple | Firefly: The Game | Elevenses for One | FUSE | A Feast for Odin | Gaia Project | Pandemic: Fall of Rome | Tapestry |
4 | Dungeons & Dragons: The Legend of Drizzt Board Game | In Magnificent Style: Pickett's Charge at Gettysburg | Maquis | Patchwork | The Bloody Inn | Agricola (Revised Edition) | Magic Maze | Dice Hospital | Maracaibo |
5 | Space Infantry | Andean Abyss | Pathfinder Adventure Card Game: Rise of the Runelords – Base Set | DungeonQuest Revised Edition | Agent Decker | Mr. Cabbagehead's Garden | Pendragon: The Fall of Roman Britain | Lords of Hellas | Era: Medieval Age |
6 | Friday | CO₂ | Legacy: The Testament of Duke de Crecy | Legendary Encounters: An Alien Deck Building Game | Tiny Epic Galaxies | Black Orchestra | Raging Bulls | Bargain Basement Bathysphere | Aquatica |
7 | Gears of War: The Board Game | Freedom: The Underground Railroad | Cruel Necessity: The English Civil Wars 1640-1653 | Pandemic: The Cure | Burgle Bros. | 1572: The Lost Expedition | Clans of Caledonia | Underwater Cities | Barrage |
8 | Elder Sign | Hoplomachus: The Lost Cities | Eldritch Horror | 1944: Race to the Rhine | The Gallerist | Star Trek: The Dice Game | D100 Dungeon | Pax Emancipation | Castle Itter |
9 | Dungeons & Dragons: Wrath of Ashardalon Board Game | Legendary: A Marvel Deck Building Game | Hoplomachus: Rise of Rome | Onirim (Second Edition) | Deep Space D-6 | Four Against Darkness | Sagrada | Palm Island | Yukon Airways |
10 | Sentinels of the Multiverse | Terra Mystica | The Hunters: German U-Boats at War, 1939-43 | Roll Through the Ages: The Iron Age | The Maiden in the Forest | Hit Z Road | Twin Stars: Adventure Series I | Blackout: Hong Kong | Florenza Dice Game |
11 | Field Commander: Napoleon | Nuklear Winter '68 | Gravwell: Escape from the 9th Dimension | Assault on Doomrock | Baseball Highlights: 2045 | Expedition: The Roleplaying Card Game | Sherman Leader | Sprawlopolis | Last Bastion |
12 | Santiago de Cuba | Urbion | Spyrium | Warfighter: The Tactical Special Forces Card Game | Sylvion | Pentaquark | Spirit Island | Duelosaur Island | Tainted Grail: The Fall of Avalon |
13 | Takenoko | Thunderbolt Apache Leader | Caverna: The Cave Farmers | Galaxy Defenders | Risk: Europe | Citadels | A4 Quest | Unbroken | It's a Wonderful World |
14 | Tragedy Looper | The Manhattan Project | BattleCON: Devastation of Indines | Hapsburg Eclipse | Grimslingers | Mini Rogue: A 9-Card Print-and-Play Game | Ex Libris | Orchard: A 9 card solitaire game | Sierra West |
15 | Dark Moon | Level 7 [Escape] | Cuba Libre | Fire in the Lake | SteamRollers | Aeon's End | Lisboa | Robin Hood and the Merry Men | Herbaceous Sprouts |
16 | Mundus Novus | Kill the Overlord | The Hobbit: An Unexpected Journey | Machina Arcana | Thunderbirds | Scythe | First Martians: Adventures on the Red Planet | The Order of Vampire Hunters | Crusader Kings |
17 | The Gnomes of Zavandor | Space Cadets | Dungeon Roll | La Granja | Super Dungeon Explore: Forgotten King | Aventuria: Adventure Card Game | Nemo's War (Second Edition) | Star Realms: Frontiers | Wingspan |
18 | Space Empires: 4X | Seasons | SOS Titanic | Enemy Coast Ahead: The Dambuster Raid | Coffee Roaster | The Oregon Trail Card Game | Dark Souls: The Board Game | Founders of Gloomhaven | Middara: Unintentional Malum – Act 1 |
19 | The Secret of Monte Cristo | Archipelago | Navajo Wars | Greenland | Hostage Negotiator | Pandemic: Iberia | The 7th Continent | CO₂: Second Chance | Call to Adventure |
20 | Eclipse | Fish Cook | Dawn of the Zeds (Second edition) | Fleet Commander: Nimitz – The WWII Pacific Ocean Solitaire Strategy Game | Blood Rage | Comanchería: The Rise and Fall of the Comanche Empire | Charterstone | Rising Sun | Choose Your Own Adventure: War with the Evil Power Master |
21 | Nile DeLuxor | Keyflower | Infection: Humanity's Last Gasp | Run, Fight, or Die! | Valley of the Kings: Afterlife | Pathfinder Adventure Card Game: Mummy's Mask – Base Set | Fire of Eidolon | 1066, Tears to Many Mothers | Tiny Towns |
22 | But Wait, There's More! | Pax Porfiriana | A Distant Plain | Roll Through the Ages: The Iron Age with Mediterranean Expansion | Viticulture Essential Edition | Martians: A Story of Civilization | Folklore: The Affliction | The Grizzled: Armistice Edition | Pax Pamir: Second Edition |
23 | A Few Acres of Snow | Kemet | Patchistory | Heroes Wanted | The Game | One Deck Dungeon | Black Sonata | Darklight: Memento Mori | Hearts and Minds: Vietnam 1965-1975 (Third Edition) |
24 | Ascension: Return of the Fallen | Wiz-War (Eighth Edition) | Antidote | Doodle Quest | Bottom of the 9th | Star Trek: Frontiers | XenoShyft: Dreadmire | Nemesis | SpaceShipped |
25 | Drako: Dragon & Dwarves | Africana | Friese's Landlord | Tiny Epic Kingdoms | Shakespeare | Falling Sky: The Gallic Revolt Against Caesar | Raxxon | Tiny Epic Zombies | Aeon's End: Legacy |
Interactive table for predictions from resampling.
How well did a model trained on a user’s collection through 2019 perform in predicting games for the user from 2020?
username | outcome_type | yearpublished | .metric | .estimator | .estimate |
tulkas | own | 2020 | roc_auc | binary | 0.705 |
tulkas | played | 2020 | roc_auc | binary | 0.705 |
Table of top 25 games from 2020, highlighting games that the user owns.
username | yearpublished | game_id | name | pred_own | pred_played | actual_own | actual_played |
tulkas | 2020 | 184267 | On Mars | 0.61 | 0.61 | 1 | 1 |
tulkas | 2020 | 291457 | Gloomhaven: Jaws of the Lion | 0.38 | 0.38 | 1 | 1 |
tulkas | 2020 | 300322 | Hallertau | 0.33 | 0.33 | 1 | 1 |
tulkas | 2020 | 310442 | Feierabend | 0.29 | 0.29 | 0 | 0 |
tulkas | 2020 | 292333 | Cowboys II: Cowboys & Indians Edition | 0.27 | 0.27 | 1 | 1 |
tulkas | 2020 | 316554 | Dune: Imperium | 0.23 | 0.23 | 1 | 1 |
tulkas | 2020 | 306029 | Dark Force Incursion | 0.19 | 0.19 | 0 | 0 |
tulkas | 2020 | 278042 | Crusader Kingdoms: The War for the Holy Land | 0.18 | 0.18 | 0 | 0 |
tulkas | 2020 | 284742 | Honey Buzz | 0.18 | 0.18 | 1 | 1 |
tulkas | 2020 | 306481 | Tawantinsuyu: The Inca Empire | 0.18 | 0.18 | 0 | 0 |
tulkas | 2020 | 306577 | Der Clou: Roll & Heist | 0.18 | 0.18 | 0 | 0 |
tulkas | 2020 | 321713 | Quest Calendar: The Dragon Staff of Maladoria | 0.18 | 0.18 | 0 | 0 |
tulkas | 2020 | 236861 | Full Moon Jacket | 0.17 | 0.17 | 0 | 0 |
tulkas | 2020 | 262208 | Dungeon Drop | 0.17 | 0.17 | 0 | 0 |
tulkas | 2020 | 262274 | D6: Dungeons, Dudes, Dames, Danger, Dice and Dragons! | 0.17 | 0.17 | 0 | 0 |
tulkas | 2020 | 275469 | Floor Plan | 0.17 | 0.17 | 0 | 0 |
tulkas | 2020 | 282922 | Windward | 0.17 | 0.17 | 0 | 0 |
tulkas | 2020 | 288513 | Tranquility | 0.17 | 0.17 | 0 | 0 |
tulkas | 2020 | 299179 | Chancellorsville 1863 | 0.17 | 0.17 | 0 | 0 |
tulkas | 2020 | 299908 | Squire for Hire: Mystic Runes | 0.17 | 0.17 | 0 | 0 |
tulkas | 2020 | 309110 | Food Chain Island | 0.17 | 0.17 | 1 | 1 |
tulkas | 2020 | 309341 | 5x15 | 0.17 | 0.17 | 0 | 0 |
tulkas | 2020 | 313750 | Personal Space | 0.17 | 0.17 | 0 | 0 |
tulkas | 2020 | 319223 | Sleeping Gods: Primeval Peril | 0.17 | 0.17 | 0 | 0 |
tulkas | 2020 | 269420 | Ragemore | 0.16 | 0.16 | 0 | 0 |
Examine the top games for the test set.
username | yearpublished | game_id | name | rank | own | played |
tulkas | 2020 | 184267 | On Mars | 1 | 0.61 | 0.61 |
tulkas | 2020 | 291457 | Gloomhaven: Jaws of the Lion | 2 | 0.38 | 0.38 |
tulkas | 2020 | 300322 | Hallertau | 3 | 0.33 | 0.33 |
tulkas | 2020 | 310442 | Feierabend | 4 | 0.29 | 0.29 |
tulkas | 2020 | 292333 | Cowboys II: Cowboys & Indians Edition | 5 | 0.27 | 0.27 |
tulkas | 2020 | 316554 | Dune: Imperium | 6 | 0.23 | 0.23 |
tulkas | 2020 | 306029 | Dark Force Incursion | 7 | 0.19 | 0.19 |
tulkas | 2020 | 306481 | Tawantinsuyu: The Inca Empire | 8 | 0.18 | 0.18 |
tulkas | 2020 | 284742 | Honey Buzz | 9 | 0.18 | 0.18 |
tulkas | 2020 | 278042 | Crusader Kingdoms: The War for the Holy Land | 10 | 0.18 | 0.18 |
tulkas | 2020 | 306577 | Der Clou: Roll & Heist | 11 | 0.18 | 0.18 |
tulkas | 2020 | 321713 | Quest Calendar: The Dragon Staff of Maladoria | 12 | 0.18 | 0.18 |
tulkas | 2020 | 262274 | D6: Dungeons, Dudes, Dames, Danger, Dice and Dragons! | 13 | 0.17 | 0.17 |
tulkas | 2020 | 282922 | Windward | 14 | 0.17 | 0.17 |
tulkas | 2020 | 288513 | Tranquility | 15 | 0.17 | 0.17 |
tulkas | 2020 | 236861 | Full Moon Jacket | 16 | 0.17 | 0.17 |
tulkas | 2020 | 262208 | Dungeon Drop | 17 | 0.17 | 0.17 |
tulkas | 2020 | 299179 | Chancellorsville 1863 | 18 | 0.17 | 0.17 |
tulkas | 2020 | 275469 | Floor Plan | 19 | 0.17 | 0.17 |
tulkas | 2020 | 299908 | Squire for Hire: Mystic Runes | 20 | 0.17 | 0.17 |
tulkas | 2020 | 309110 | Food Chain Island | 21 | 0.17 | 0.17 |
tulkas | 2020 | 309341 | 5x15 | 22 | 0.17 | 0.17 |
tulkas | 2020 | 313750 | Personal Space | 23 | 0.17 | 0.17 |
tulkas | 2020 | 319223 | Sleeping Gods: Primeval Peril | 24 | 0.17 | 0.17 |
tulkas | 2020 | 270143 | Kōhaku | 25 | 0.16 | 0.16 |
tulkas | 2021 | 310873 | Carnegie | 1 | 0.41 | 0.41 |
tulkas | 2021 | 342942 | Ark Nova | 2 | 0.37 | 0.37 |
tulkas | 2021 | 314088 | Agropolis | 3 | 0.33 | 0.33 |
tulkas | 2021 | 295535 | Dark Ages: Heritage of Charlemagne | 4 | 0.32 | 0.32 |
tulkas | 2021 | 304985 | Dark Ages: Holy Roman Empire | 5 | 0.32 | 0.32 |
tulkas | 2021 | 298102 | Roll Camera!: The Filmmaking Board Game | 6 | 0.31 | 0.31 |
tulkas | 2021 | 320446 | Corduba 27 a.C. | 7 | 0.29 | 0.29 |
tulkas | 2021 | 340909 | Gloomholdin' | 8 | 0.25 | 0.25 |
tulkas | 2021 | 336195 | League of Dungeoneers | 9 | 0.24 | 0.24 |
tulkas | 2021 | 327971 | Hippocrates | 10 | 0.24 | 0.24 |
tulkas | 2021 | 249277 | Brazil: Imperial | 11 | 0.21 | 0.21 |
tulkas | 2021 | 306182 | Bandada | 12 | 0.21 | 0.21 |
tulkas | 2021 | 252752 | Genotype: A Mendelian Genetics Game | 13 | 0.21 | 0.21 |
tulkas | 2021 | 290236 | Canvas | 14 | 0.20 | 0.20 |
tulkas | 2021 | 340237 | Wonder Book | 15 | 0.19 | 0.19 |
tulkas | 2021 | 305682 | Rolling Realms | 16 | 0.19 | 0.19 |
tulkas | 2021 | 301366 | Caves of Rwenzori | 17 | 0.19 | 0.19 |
tulkas | 2021 | 301441 | Drawn to Adventure | 18 | 0.19 | 0.19 |
tulkas | 2021 | 314589 | Night Parade of a Hundred Yokai | 19 | 0.18 | 0.18 |
tulkas | 2021 | 322703 | Death Valley | 20 | 0.18 | 0.18 |
tulkas | 2021 | 329613 | Paper Apps: Dungeon | 21 | 0.18 | 0.18 |
tulkas | 2021 | 329873 | GROVE: A 9 card solitaire game | 22 | 0.18 | 0.18 |
tulkas | 2021 | 334590 | For Northwood! A Solo Trick-Taking Game | 23 | 0.18 | 0.18 |
tulkas | 2021 | 348955 | Rock Paper Scissors: Deluxe Edition | 24 | 0.18 | 0.18 |
tulkas | 2021 | 295947 | Cascadia | 25 | 0.18 | 0.18 |
tulkas | 2022 | 330950 | Age of Galaxy | 1 | 0.34 | 0.34 |
tulkas | 2022 | 331106 | The Witcher: Old World | 2 | 0.31 | 0.31 |
tulkas | 2022 | 295770 | Frosthaven | 3 | 0.29 | 0.29 |
tulkas | 2022 | 334065 | Verdant | 4 | 0.25 | 0.25 |
tulkas | 2022 | 317511 | Tindaya | 5 | 0.21 | 0.21 |
tulkas | 2022 | 322524 | Bardsung | 6 | 0.21 | 0.21 |
tulkas | 2022 | 284118 | Mechanical Beast | 7 | 0.20 | 0.20 |
tulkas | 2022 | 317321 | Darkest Dungeon: The Board Game | 8 | 0.18 | 0.18 |
tulkas | 2022 | 304051 | Creature Comforts | 9 | 0.18 | 0.18 |
tulkas | 2022 | 294880 | Chai: Tea for 2 | 10 | 0.17 | 0.17 |
tulkas | 2022 | 335427 | Wild: Serengeti | 11 | 0.16 | 0.16 |
tulkas | 2022 | 324090 | Scarface 1920 | 12 | 0.16 | 0.16 |
tulkas | 2022 | 256680 | Return to Dark Tower | 13 | 0.16 | 0.16 |
tulkas | 2022 | 322589 | Zapotec | 14 | 0.15 | 0.15 |
tulkas | 2022 | 299106 | Fractal: Beyond the Void | 15 | 0.15 | 0.15 |
tulkas | 2022 | 312959 | Rallyman: DIRT | 16 | 0.15 | 0.15 |
tulkas | 2022 | 280726 | Legacies | 17 | 0.15 | 0.15 |
tulkas | 2022 | 305096 | Endless Winter: Paleoamericans | 18 | 0.14 | 0.14 |
tulkas | 2022 | 319807 | Shogun no Katana | 19 | 0.14 | 0.14 |
tulkas | 2022 | 282775 | The Warp | 20 | 0.13 | 0.13 |
tulkas | 2022 | 331401 | Dog Park | 21 | 0.13 | 0.13 |
tulkas | 2022 | 342444 | Black Rose Wars: Rebirth | 22 | 0.13 | 0.13 |
tulkas | 2022 | 305462 | The Age of Atlantis | 23 | 0.13 | 0.13 |
tulkas | 2022 | 311988 | Frostpunk: The Board Game | 24 | 0.13 | 0.13 |
tulkas | 2022 | 219650 | Arydia: The Paths We Dare Tread | 25 | 0.12 | 0.12 |