This notebook contains a set of analyses for the selected user’s boardgamegeek collection. The bulk of the analysis is focused on building a user-specific predictive model to predict the games that Johntravels1 is likely to own. This enables to ask questions like, based on the games the user currently owns, what games are a good fit for their collection? What upcoming games are they likely to purchase?
This analysis is based on data from BoardGameGeek that was last updated on 2021-12-20.
We can look at a basic description of the number of games that the user owns, has rated, has previously owned, etc.
What years has the user owned/rated games from? While we can’t see when a user added or removed a game from their collection, we can look at their collection by the years in which their games were published.
We can look at the most frequent types of categories, mechanics, designers, and artists that appear in a user’s collection.
We’ll examine a predictive model trained on a user’s collection for games published through 2019. How many games has the user owned/rated/played in the training set (games prior to 2019)?
username | dataset | period | games_owned | games_rated | games_played |
Johntravels1 | training | published before 2020 | 55 | 69 | 70 |
Johntravels1 | test | published 2020 or later | 1 | 2 | 2 |
There are two main (binary) outcomes we will be modeling for the user.
The first, own refers to whether the user currently lists a game as owned in their collection. The second, played refers to whether the user currently owns, has rated, or previously owned a game. This means the latter will generally have a larger list of games, but may still be a useful category to examine for people who play lots of games without necessarily owning them.
We will train predictive models to learn the probability that the user will own or play individual games based on their features.
We can examine coefficients from the trained modes, which are penalized logistic regressions fit to our two main outcomes. Positive values indicate that a feature increases a user’s probabilility of owning/rating a game, while negative values indicate a feature decreases the probability.
Why did the model identify these features? We can make density plots of the important features for predicting whether the user owned a game. Blue indicates the density for games owned by the user, while grey indicates the density for games not owned by the user.
Binary predictors can be difficult to see with this visualization, so we can also directly examine the percentage of games in a user’s collection with a predictor vs the percentage of all games with that predictor.
% of Games with Feature | ||||
username | Feature | In_Collection | All_Games | Ratio |
Johntravels1 | Hidden Roles | 7.3% | 0.7% | 10.5 |
Johntravels1 | Contracts | 9.1% | 1.0% | 9.2 |
Johntravels1 | Gamewright | 7.3% | 0.9% | 7.9 |
Johntravels1 | Communication Limits | 7.3% | 1.0% | 7.6 |
Johntravels1 | CMON Global Limited | 5.5% | 0.8% | 6.8 |
Johntravels1 | Number | 5.5% | 0.9% | 6.1 |
Johntravels1 | Asmodee | 30.9% | 5.2% | 5.9 |
Johntravels1 | Square Grid | 7.3% | 1.4% | 5.2 |
Johntravels1 | Fantasy Flight Games | 12.7% | 2.6% | 4.9 |
Johntravels1 | Race | 9.1% | 1.8% | 4.9 |
Johntravels1 | Travel | 5.5% | 1.2% | 4.6 |
Johntravels1 | Voting | 9.1% | 2.4% | 3.8 |
Johntravels1 | Educational | 5.5% | 1.6% | 3.4 |
Johntravels1 | Word Game | 5.5% | 1.7% | 3.1 |
Johntravels1 | Iello | 9.1% | 3.1% | 2.9 |
Johntravels1 | Solo Solitaire Game | 16.4% | 5.9% | 2.8 |
Johntravels1 | Set Collection | 41.8% | 17.5% | 2.4 |
Johntravels1 | Pattern Building | 9.1% | 3.8% | 2.4 |
Johntravels1 | Fantasy | 30.9% | 14.7% | 2.1 |
Johntravels1 | Hand Management | 50.9% | 26.6% | 1.9 |
Johntravels1 | Miniatures | 1.8% | 5.4% | 0.3 |
Johntravels1 | Role Playing | 0.0% | 3.3% | 0.0 |
Johntravels1 | Childrens Game | 0.0% | 5.7% | 0.0 |
Johntravels1 | Novel Based | 0.0% | 2.8% | 0.0 |
Johntravels1 | Realtime | 0.0% | 4.2% | 0.0 |
Before predicting games in upcoming years, we can examine how well the model did and what games it liked in the training set. In this case, we used resampling techniques (cross validation) to ensure that the model had not seen a game before making its predictions.
An easy way to examine the performance of classification model is to view a separation plot. We plot the predicted probabilities from the model for every game (from resampling) from lowest to highest. We then overlay a blue line for any game that the user does own. A good classifier is one that is able to separate the blue (games owned by the user) from the white (games not owned by the user), with most of the blue occurring at the highest probabilities (right side of the chart).
We can display this information in table form, displaying the 100 games with the highest probability of ownership, adding a blue line when the user does own the game.
username | yearpublished | game_id | name | pred_played | pred_own | actual_played | actual_own |
Johntravels1 | 2000 | 478 | Citadels | 0.44 | 0.95 | 0 | 0 |
Johntravels1 | 2019 | 283863 | The Magnificent | 0.28 | 0.57 | 0 | 0 |
Johntravels1 | 2014 | 163412 | Patchwork | 0.12 | 0.53 | 0 | 0 |
Johntravels1 | 2018 | 205896 | Rising Sun | 0.23 | 0.52 | 0 | 0 |
Johntravels1 | 1997 | 42 | Tigris & Euphrates | 0.20 | 0.51 | 0 | 0 |
Johntravels1 | 2011 | 70919 | Takenoko | 0.22 | 0.48 | 0 | 0 |
Johntravels1 | 2015 | 173090 | The Game | 0.01 | 0.43 | 0 | 0 |
Johntravels1 | 2019 | 270971 | Era: Medieval Age | 0.22 | 0.42 | 0 | 0 |
Johntravels1 | 2015 | 178900 | Codenames | 0.09 | 0.39 | 0 | 0 |
Johntravels1 | 2004 | 11945 | Linq | 0.05 | 0.34 | 0 | 0 |
Johntravels1 | 2017 | 209685 | Century: Spice Road | 0.08 | 0.31 | 0 | 0 |
Johntravels1 | 2019 | 276025 | Maracaibo | 0.35 | 0.28 | 0 | 0 |
Johntravels1 | 2006 | 21882 | Blue Moon City | 0.03 | 0.26 | 1 | 1 |
Johntravels1 | 1995 | 13 | Catan | 0.07 | 0.26 | 0 | 0 |
Johntravels1 | 2008 | 39463 | Cosmic Encounter | 0.04 | 0.25 | 0 | 0 |
Johntravels1 | 2016 | 198454 | When I Dream | 0.08 | 0.24 | 0 | 0 |
Johntravels1 | 2019 | 245655 | The King's Dilemma | 0.02 | 0.24 | 0 | 0 |
Johntravels1 | 2003 | 8129 | Sluff Off! | 0.13 | 0.23 | 0 | 0 |
Johntravels1 | 2003 | 7240 | Vanished Planet | 0.03 | 0.22 | 0 | 0 |
Johntravels1 | 2013 | 136063 | Forbidden Desert | 0.09 | 0.21 | 1 | 1 |
Johntravels1 | 2005 | 17053 | Sleeping Queens | 0.11 | 0.21 | 0 | 0 |
Johntravels1 | 2015 | 172225 | Exploding Kittens | 0.04 | 0.21 | 0 | 0 |
Johntravels1 | 2015 | 181304 | Mysterium | 0.09 | 0.20 | 0 | 0 |
Johntravels1 | 2016 | 205322 | The Oregon Trail Card Game | 0.08 | 0.20 | 0 | 0 |
Johntravels1 | 2015 | 172242 | Exploding Kittens: NSFW Deck | 0.03 | 0.20 | 0 | 0 |
Johntravels1 | 2018 | 244711 | Newton | 0.16 | 0.19 | 0 | 0 |
Johntravels1 | 2014 | 154203 | Imperial Settlers | 0.05 | 0.18 | 0 | 0 |
Johntravels1 | 2010 | 65200 | Asteroyds | 0.09 | 0.18 | 0 | 0 |
Johntravels1 | 2015 | 172081 | Burgle Bros. | 0.02 | 0.17 | 0 | 0 |
Johntravels1 | 2018 | 260428 | Pandemic: Fall of Rome | 0.06 | 0.17 | 0 | 0 |
Johntravels1 | 2019 | 266524 | PARKS | 0.07 | 0.17 | 0 | 0 |
Johntravels1 | 2019 | 283294 | Yukon Airways | 0.06 | 0.16 | 0 | 0 |
Johntravels1 | 1997 | 1403 | Turn the Tide | 0.06 | 0.16 | 0 | 0 |
Johntravels1 | 2001 | 1345 | Genoa | 0.16 | 0.16 | 0 | 0 |
Johntravels1 | 2018 | 258444 | Gingerbread House | 0.09 | 0.15 | 0 | 0 |
Johntravels1 | 2017 | 211534 | Bears vs Babies | 0.03 | 0.15 | 0 | 0 |
Johntravels1 | 2014 | 148228 | Splendor | 0.12 | 0.14 | 1 | 1 |
Johntravels1 | 2019 | 260710 | Amul | 0.05 | 0.14 | 0 | 0 |
Johntravels1 | 2004 | 12005 | Around the World in 80 Days | 0.07 | 0.14 | 0 | 0 |
Johntravels1 | 2010 | 98778 | Hanabi | 0.07 | 0.14 | 0 | 0 |
Johntravels1 | 2004 | 9446 | Blue Moon | 0.07 | 0.13 | 0 | 0 |
Johntravels1 | 2014 | 157354 | Five Tribes | 0.02 | 0.13 | 0 | 0 |
Johntravels1 | 2018 | 246192 | Gizmos | 0.01 | 0.13 | 0 | 0 |
Johntravels1 | 2015 | 175878 | 504 | 0.28 | 0.13 | 0 | 0 |
Johntravels1 | 1981 | 139 | Hoax | 0.06 | 0.13 | 0 | 0 |
Johntravels1 | 2010 | 62219 | Dominant Species | 0.20 | 0.13 | 0 | 0 |
Johntravels1 | 2017 | 220517 | The Shipwreck Arcana | 0.09 | 0.13 | 0 | 0 |
Johntravels1 | 2001 | 7708 | Hisss | 0.13 | 0.13 | 0 | 0 |
Johntravels1 | 2017 | 224037 | Codenames: Duet | 0.02 | 0.12 | 1 | 1 |
Johntravels1 | 2016 | 205158 | Codenames: Deep Undercover | 0.01 | 0.12 | 0 | 0 |
Johntravels1 | 2009 | 41114 | The Resistance | 0.06 | 0.12 | 0 | 0 |
Johntravels1 | 2017 | 195539 | The Godfather: Corleone's Empire | 0.04 | 0.12 | 0 | 0 |
Johntravels1 | 2006 | 22864 | Zeus on the Loose | 0.08 | 0.12 | 0 | 0 |
Johntravels1 | 1999 | 50 | Lost Cities | 0.09 | 0.11 | 0 | 0 |
Johntravels1 | 2018 | 240464 | Cosmic Run: Regeneration | 0.07 | 0.11 | 0 | 0 |
Johntravels1 | 2018 | 246761 | Cahoots | 0.08 | 0.11 | 0 | 0 |
Johntravels1 | 2015 | 171623 | The Voyages of Marco Polo | 0.07 | 0.11 | 0 | 0 |
Johntravels1 | 2011 | 115233 | Rory's Story Cubes: Voyages | 0.04 | 0.11 | 0 | 0 |
Johntravels1 | 2014 | 156129 | Deception: Murder in Hong Kong | 0.07 | 0.11 | 0 | 0 |
Johntravels1 | 2008 | 37111 | Battlestar Galactica: The Board Game | 0.16 | 0.11 | 0 | 0 |
Johntravels1 | 2016 | 204837 | Game of Thrones: The Iron Throne | 0.06 | 0.11 | 0 | 0 |
Johntravels1 | 2010 | 73439 | Troyes | 0.20 | 0.10 | 0 | 0 |
Johntravels1 | 2014 | 155987 | Abyss | 0.07 | 0.10 | 0 | 0 |
Johntravels1 | 2018 | 233020 | Fireball Island: The Curse of Vul-Kar | 0.04 | 0.10 | 0 | 0 |
Johntravels1 | 2009 | 40628 | Finca | 0.05 | 0.10 | 0 | 0 |
Johntravels1 | 2019 | 285984 | Last Bastion | 0.06 | 0.10 | 0 | 0 |
Johntravels1 | 2017 | 162886 | Spirit Island | 0.04 | 0.10 | 1 | 0 |
Johntravels1 | 2016 | 192291 | Sushi Go Party! | 0.13 | 0.10 | 0 | 0 |
Johntravels1 | 2017 | 234396 | Muse | 0.02 | 0.10 | 0 | 0 |
Johntravels1 | 2014 | 155703 | Evolution | 0.01 | 0.10 | 0 | 0 |
Johntravels1 | 2012 | 117915 | Yedo | 0.06 | 0.10 | 0 | 0 |
Johntravels1 | 2013 | 140620 | Lewis & Clark: The Expedition | 0.10 | 0.10 | 0 | 0 |
Johntravels1 | 2013 | 133473 | Sushi Go! | 0.14 | 0.10 | 0 | 0 |
Johntravels1 | 2001 | 878 | Wyatt Earp | 0.07 | 0.09 | 0 | 0 |
Johntravels1 | 2017 | 231280 | Harvest Dice | 0.04 | 0.09 | 0 | 0 |
Johntravels1 | 2019 | 251412 | On Tour | 0.07 | 0.09 | 0 | 0 |
Johntravels1 | 2018 | 225694 | Decrypto | 0.01 | 0.09 | 1 | 1 |
Johntravels1 | 2017 | 227072 | The Chameleon | 0.05 | 0.09 | 0 | 0 |
Johntravels1 | 2002 | 3955 | BANG! | 0.10 | 0.09 | 1 | 1 |
Johntravels1 | 2005 | 12493 | Twilight Imperium: Third Edition | 0.04 | 0.09 | 0 | 0 |
Johntravels1 | 2019 | 256729 | Wacky Races: The Board Game | 0.04 | 0.09 | 0 | 0 |
Johntravels1 | 2016 | 177590 | 13 Days: The Cuban Missile Crisis | 0.09 | 0.08 | 0 | 0 |
Johntravels1 | 2011 | 103814 | Streams | 0.04 | 0.08 | 0 | 0 |
Johntravels1 | 2018 | 254591 | Heroes of Terrinoth | 0.05 | 0.08 | 0 | 0 |
Johntravels1 | 1977 | 1555 | Dungeon Dice | 0.02 | 0.08 | 0 | 0 |
Johntravels1 | 2010 | 65244 | Forbidden Island | 0.08 | 0.08 | 1 | 1 |
Johntravels1 | 2015 | 176165 | Dale of Merchants | 0.05 | 0.08 | 0 | 0 |
Johntravels1 | 2019 | 270673 | Silver & Gold | 0.05 | 0.08 | 0 | 0 |
Johntravels1 | 2006 | 22465 | On the Dot | 0.02 | 0.08 | 0 | 0 |
Johntravels1 | 2013 | 143741 | BANG! The Dice Game | 0.05 | 0.08 | 0 | 0 |
Johntravels1 | 2019 | 253185 | Chai | 0.05 | 0.08 | 0 | 0 |
Johntravels1 | 2017 | 179172 | Unfair | 0.03 | 0.08 | 0 | 0 |
Johntravels1 | 2016 | 167791 | Terraforming Mars | 0.03 | 0.08 | 0 | 0 |
Johntravels1 | 2009 | 42124 | Dungeon Twister 2: Prison | 0.04 | 0.07 | 0 | 0 |
Johntravels1 | 1980 | 4746 | Dungeons & Dragons Computer Labyrinth Game | 0.05 | 0.07 | 0 | 0 |
Johntravels1 | 2017 | 218530 | Tortuga 1667 | 0.07 | 0.07 | 0 | 0 |
Johntravels1 | 2011 | 94480 | Pantheon | 0.05 | 0.07 | 0 | 0 |
Johntravels1 | 2011 | 91312 | Discworld: Ankh-Morpork | 0.05 | 0.07 | 0 | 0 |
Johntravels1 | 2010 | 77130 | Sid Meier's Civilization: The Board Game | 0.08 | 0.07 | 0 | 0 |
Johntravels1 | 2017 | 201825 | Ex Libris | 0.03 | 0.07 | 0 | 0 |
We can also more formally assess how well the model did in resampling by looking at the area under the receiver operating characteristic. A perfect model would receive a score of 1, while a model that cannot predict the outcome will default to a score of 0.5. The extent to which something is a good score depends on the setting, but generally anything in the .8 to .9 range is very good while the .7 to .8 range is perfectly acceptable.
username | outcome_type | .metric | .estimator | .estimate |
Johntravels1 | own | roc_auc | binary | 0.831 |
Johntravels1 | played | roc_auc | binary | 0.794 |
Another way to think about the model performance is to view its lift, or its ability to detect the positive outcomes over that of a null model. High lift indicates the model can much more quickly find all of the positive outcomes (in this case, games owned or played by the user), while a model with no lift is no better than random guessing.
What games does the model think Johntravels1 is most likely to own that are not in their collection?
username | yearpublished | game_id | name | pred_own | actual_own |
Johntravels1 | 2000 | 478 | Citadels | 0.95 | 0 |
Johntravels1 | 2019 | 283863 | The Magnificent | 0.57 | 0 |
Johntravels1 | 2014 | 163412 | Patchwork | 0.53 | 0 |
Johntravels1 | 2018 | 205896 | Rising Sun | 0.52 | 0 |
Johntravels1 | 1997 | 42 | Tigris & Euphrates | 0.51 | 0 |
What games does the model think Johntravels1 is least likely to own that are in their collection?
username | yearpublished | game_id | name | pred_own | actual_own |
Johntravels1 | 2007 | 30869 | Thebes | 0 | 1 |
Johntravels1 | 2017 | 210052 | Lazer Ryderz | 0 | 1 |
Johntravels1 | 2017 | 194594 | Dice Forge | 0 | 1 |
Johntravels1 | 2017 | 219513 | Bärenpark | 0 | 1 |
Johntravels1 | 1977 | 1295 | Pente | 0 | 1 |
Top 25 games most likely to be owned by the user in each year, highlighting in blue the games that the user has owned/played.
rank | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
1 | Takenoko | Yedo | Forbidden Desert | Patchwork | The Game | When I Dream | Century: Spice Road | Rising Sun | The Magnificent |
2 | Rory's Story Cubes: Voyages | Freedom: The Underground Railroad | Lewis & Clark: The Expedition | Imperial Settlers | Codenames | The Oregon Trail Card Game | Bears vs Babies | Newton | Era: Medieval Age |
3 | Streams | Uchronia | Sushi Go! | Splendor | Exploding Kittens | Codenames: Deep Undercover | The Shipwreck Arcana | Pandemic: Fall of Rome | Maracaibo |
4 | Pantheon | Legends of Andor | BANG! The Dice Game | Five Tribes | Mysterium | Game of Thrones: The Iron Throne | Codenames: Duet | Gingerbread House | The King's Dilemma |
5 | Discworld: Ankh-Morpork | Libertalia | Dicht dran | Deception: Murder in Hong Kong | Exploding Kittens: NSFW Deck | Sushi Go Party! | The Godfather: Corleone's Empire | Gizmos | PARKS |
6 | Ninjato | Zug um Zug: Deutschland | Cube Quest | Abyss | Burgle Bros. | 13 Days: The Cuban Missile Crisis | Spirit Island | Cosmic Run: Regeneration | Yukon Airways |
7 | A Game of Thrones: The Board Game (Second Edition) | Lords of Waterdeep | Dungeon Twister: The Card Game | Evolution | 504 | Terraforming Mars | Muse | Cahoots | Amul |
8 | Pastiche | Urbion | Tash-Kalar: Arena of Legends | La Granja | The Voyages of Marco Polo | New Angeles | Harvest Dice | Fireball Island: The Curse of Vul-Kar | Last Bastion |
9 | Octopus's Garden | Space Cadets | Thebes: The Tomb Raiders | Dogs of War | Dale of Merchants | Codenames: Pictures | The Chameleon | Decrypto | On Tour |
10 | Mundus Novus | Qwixx | Legacy: The Testament of Duke de Crecy | Qwixx Card Game | Blood Rage | Black Orchestra | Unfair | Heroes of Terrinoth | Wacky Races: The Board Game |
11 | Dixit: Odyssey | Archipelago | Rory's Story Cubes: Prehistoria | Heroes of Normandie | Imagine | Bloodborne: The Card Game | Tortuga 1667 | Founders of Gloomhaven | Silver & Gold |
12 | Seven Dragons | The Manhattan Project | La Boca | The Witcher Adventure Game | Qwinto | Behind the Throne | Ex Libris | Architects of the West Kingdom | Chai |
13 | Ascension: Return of the Fallen | Wiz-War (Eighth Edition) | Munchkin Legends | Spyfall | Rolling America | A Game of Thrones: Hand of the King | Trash Pandas | The Grizzled: Armistice Edition | Marco Polo II: In the Service of the Khan |
14 | Dungeon Petz | Dixit: Journey | Superfight | The Staufer Dynasty | Grand Austria Hotel | Junk Art | Richard the Lionheart | Century: Eastern Wonders | Ecos: First Continent |
15 | Fortuna | The Resistance: Avalon | Warhammer: Diskwars | Gaïa | Dragonwood | Braintopia | Azul | Azul: Stained Glass of Sintra | Res Arcana |
16 | Rune Age | The Cave | Berserk: War of the Realms | Arcadia Quest | Bring Your Own Book | Aeon's End | Gloomhaven | Metro X | Century: A New World |
17 | Mage Knight Board Game | Urbania | Patchistory | Easy Breezy Travel Agency | Salem 1692 | Touria | Bargain Quest | Everdell | Yōkai |
18 | PAX | Rent a Hero | Euphoria: Build a Better Dystopia | Alchemists | Elfenroads | Dream Home | Century: Golem Edition | 8Bit Box | Noctiluca |
19 | Ascension: Storm of Souls | Descent: Journeys in the Dark (Second Edition) | Impulse | Pyramix | Tulip Bubble | Forged in Steel | King of the Dice | Spell Smashers | Ragusa |
20 | Blood Bowl: Team Manager – The Card Game | Targi | Crossing | Tiny Epic Kingdoms | Sylvion | Agricola (Revised Edition) | Magic Maze | Realm of Sand | It's a Wonderful World |
21 | Trajan | Seasons | Prosperity | Pandemic: The Cure | Elysium | StoryLine: Fairy Tales | Twilight Imperium: Fourth Edition | Luxor | KeyForge: Age of Ascension |
22 | Dungeon Fighter | Africana | Salmon Run | Smash Up: Science Fiction Double Feature | Jeju Island | Timebomb | Werewords | Hail Hydra | Pandemic: Rapid Response |
23 | Skull | IOTA | 8 Masters' Revenge | The Ancient World | 3 sind eine zu viel! | Simon's Cat Card Game | Battle for Rokugan | Trapwords | Paris: La Cité de la Lumière |
24 | Flash Point: Fire Rescue | Rex: Final Days of an Empire | Ascension: Rise of Vigil | Castles of Mad King Ludwig | Feelinks | The Networks | Sagrada | Cosmic Encounter: 42nd Anniversary Edition | Western Empires |
25 | Undermining | Exodus: Proxima Centauri | The Builders: Middle Ages | DungeonQuest Revised Edition | Mission: Red Planet (Second Edition) | Pandemic: Iberia | Tybor the Builder | A Song of Ice & Fire: Tabletop Miniatures Game – Stark vs Lannister Starter Set | The Isle of Cats |
Interactive table for predictions from resampling.
How well did a model trained on a user’s collection through 2019 perform in predicting games for the user from 2020?
username | outcome_type | yearpublished | .metric | .estimator | .estimate |
Johntravels1 | own | 2020 | roc_auc | binary | 0.899 |
Johntravels1 | played | 2020 | roc_auc | binary | 0.953 |
Table of top 25 games from 2020, highlighting games that the user owns.
username | yearpublished | game_id | name | pred_own | pred_played | actual_own | actual_played |
Johntravels1 | 2020 | 291457 | Gloomhaven: Jaws of the Lion | 0.35 | 0.34 | 0 | 0 |
Johntravels1 | 2020 | 184267 | On Mars | 0.25 | 0.38 | 0 | 0 |
Johntravels1 | 2020 | 300442 | Trekking the World | 0.24 | 0.07 | 0 | 0 |
Johntravels1 | 2020 | 298572 | Cosmic Encounter Duel | 0.19 | 0.12 | 0 | 0 |
Johntravels1 | 2020 | 274841 | Cóatl | 0.17 | 0.03 | 0 | 0 |
Johntravels1 | 2020 | 320819 | Dinner in Paris | 0.17 | 0.13 | 0 | 0 |
Johntravels1 | 2020 | 284742 | Honey Buzz | 0.15 | 0.05 | 0 | 0 |
Johntravels1 | 2020 | 292333 | Cowboys II: Cowboys & Indians Edition | 0.12 | 0.18 | 0 | 0 |
Johntravels1 | 2020 | 301880 | Raiders of Scythia | 0.11 | 0.04 | 0 | 0 |
Johntravels1 | 2020 | 306040 | Merv: The Heart of the Silk Road | 0.11 | 0.08 | 0 | 0 |
Johntravels1 | 2020 | 316377 | 7 Wonders (Second Edition) | 0.11 | 0.09 | 0 | 0 |
Johntravels1 | 2020 | 245658 | Unicorn Fever | 0.10 | 0.04 | 0 | 0 |
Johntravels1 | 2020 | 309600 | Archers of Nand | 0.10 | 0.02 | 0 | 0 |
Johntravels1 | 2020 | 323784 | Ghost Letters | 0.09 | 0.07 | 0 | 0 |
Johntravels1 | 2020 | 288513 | Tranquility | 0.08 | 0.07 | 0 | 0 |
Johntravels1 | 2020 | 306481 | Tawantinsuyu: The Inca Empire | 0.08 | 0.04 | 0 | 0 |
Johntravels1 | 2020 | 262208 | Dungeon Drop | 0.07 | 0.08 | 0 | 0 |
Johntravels1 | 2020 | 293556 | Gloomy Graves | 0.07 | 0.02 | 0 | 0 |
Johntravels1 | 2020 | 299592 | Beez | 0.07 | 0.03 | 0 | 0 |
Johntravels1 | 2020 | 302465 | Obsidia | 0.07 | 0.04 | 0 | 0 |
Johntravels1 | 2020 | 289939 | Goblin Teeth | 0.06 | 0.04 | 0 | 0 |
Johntravels1 | 2020 | 315631 | Santorini: New York | 0.06 | 0.03 | 0 | 0 |
Johntravels1 | 2020 | 318183 | Prehistories | 0.06 | 0.03 | 0 | 0 |
Johntravels1 | 2020 | 257001 | Munchkin Dungeon | 0.05 | 0.01 | 0 | 0 |
Johntravels1 | 2020 | 281466 | Yedo: Deluxe Master Set | 0.05 | 0.04 | 0 | 0 |
Examine the top games for the test set.
username | yearpublished | game_id | name | rank | own | played |
Johntravels1 | 2020 | 291457 | Gloomhaven: Jaws of the Lion | 1 | 0.35 | 0.34 |
Johntravels1 | 2020 | 184267 | On Mars | 2 | 0.25 | 0.38 |
Johntravels1 | 2020 | 300442 | Trekking the World | 3 | 0.24 | 0.07 |
Johntravels1 | 2020 | 298572 | Cosmic Encounter Duel | 4 | 0.19 | 0.12 |
Johntravels1 | 2020 | 274841 | Cóatl | 5 | 0.17 | 0.03 |
Johntravels1 | 2020 | 320819 | Dinner in Paris | 6 | 0.17 | 0.13 |
Johntravels1 | 2020 | 284742 | Honey Buzz | 7 | 0.15 | 0.05 |
Johntravels1 | 2020 | 292333 | Cowboys II: Cowboys & Indians Edition | 8 | 0.12 | 0.18 |
Johntravels1 | 2020 | 316377 | 7 Wonders (Second Edition) | 9 | 0.11 | 0.09 |
Johntravels1 | 2020 | 306040 | Merv: The Heart of the Silk Road | 10 | 0.11 | 0.08 |
Johntravels1 | 2020 | 301880 | Raiders of Scythia | 11 | 0.11 | 0.04 |
Johntravels1 | 2020 | 245658 | Unicorn Fever | 12 | 0.10 | 0.04 |
Johntravels1 | 2020 | 309600 | Archers of Nand | 13 | 0.10 | 0.02 |
Johntravels1 | 2020 | 323784 | Ghost Letters | 14 | 0.09 | 0.07 |
Johntravels1 | 2020 | 288513 | Tranquility | 15 | 0.08 | 0.07 |
Johntravels1 | 2020 | 306481 | Tawantinsuyu: The Inca Empire | 16 | 0.08 | 0.04 |
Johntravels1 | 2020 | 262208 | Dungeon Drop | 17 | 0.07 | 0.08 |
Johntravels1 | 2020 | 293556 | Gloomy Graves | 18 | 0.07 | 0.02 |
Johntravels1 | 2020 | 299592 | Beez | 19 | 0.07 | 0.03 |
Johntravels1 | 2020 | 302465 | Obsidia | 20 | 0.07 | 0.04 |
Johntravels1 | 2020 | 315631 | Santorini: New York | 21 | 0.06 | 0.03 |
Johntravels1 | 2020 | 318183 | Prehistories | 22 | 0.06 | 0.03 |
Johntravels1 | 2020 | 289939 | Goblin Teeth | 23 | 0.06 | 0.04 |
Johntravels1 | 2020 | 306687 | Get Out of Colditz: The Card Game | 24 | 0.05 | 0.03 |
Johntravels1 | 2020 | 302310 | Nanaki | 25 | 0.05 | 0.07 |
Johntravels1 | 2021 | 291859 | Riftforce | 1 | 0.31 | 0.15 |
Johntravels1 | 2021 | 298102 | Roll Camera!: The Filmmaking Board Game | 2 | 0.26 | 0.17 |
Johntravels1 | 2021 | 316287 | Quest | 3 | 0.16 | 0.07 |
Johntravels1 | 2021 | 252752 | Genotype: A Mendelian Genetics Game | 4 | 0.16 | 0.07 |
Johntravels1 | 2021 | 285967 | Ankh: Gods of Egypt | 5 | 0.16 | 0.09 |
Johntravels1 | 2021 | 340466 | Unfathomable | 6 | 0.15 | 0.18 |
Johntravels1 | 2021 | 343905 | Boonlake | 7 | 0.12 | 0.10 |
Johntravels1 | 2021 | 282776 | Tumble Town | 8 | 0.11 | 0.07 |
Johntravels1 | 2021 | 283387 | Rocketmen | 9 | 0.09 | 0.10 |
Johntravels1 | 2021 | 319999 | Dungeon Decorators | 10 | 0.09 | 0.08 |
Johntravels1 | 2021 | 319792 | Fly-A-Way | 11 | 0.09 | 0.08 |
Johntravels1 | 2021 | 341048 | Free Ride | 12 | 0.08 | 0.05 |
Johntravels1 | 2021 | 318996 | Welcome to Sysifus Corp | 13 | 0.07 | 0.04 |
Johntravels1 | 2021 | 307862 | Dollars to Donuts | 14 | 0.07 | 0.03 |
Johntravels1 | 2021 | 249277 | Brazil: Imperial | 15 | 0.07 | 0.08 |
Johntravels1 | 2021 | 290236 | Canvas | 16 | 0.06 | 0.06 |
Johntravels1 | 2021 | 342848 | World of Warcraft: Wrath of the Lich King | 17 | 0.06 | 0.06 |
Johntravels1 | 2021 | 300217 | Merchants of the Dark Road | 18 | 0.05 | 0.06 |
Johntravels1 | 2021 | 308989 | Bristol 1350 | 19 | 0.05 | 0.04 |
Johntravels1 | 2021 | 337389 | Snakesss | 20 | 0.05 | 0.03 |
Johntravels1 | 2021 | 316080 | KeyForge: Dark Tidings | 21 | 0.04 | 0.02 |
Johntravels1 | 2021 | 311918 | Lost Explorers | 22 | 0.04 | 0.03 |
Johntravels1 | 2021 | 323612 | Bitoku | 23 | 0.04 | 0.02 |
Johntravels1 | 2021 | 265771 | Dance Card! | 24 | 0.04 | 0.03 |
Johntravels1 | 2021 | 305761 | Whale Riders | 25 | 0.04 | 0.03 |
Johntravels1 | 2022 | 283137 | Human Punishment: The Beginning | 1 | 0.19 | 0.17 |
Johntravels1 | 2022 | 331106 | The Witcher: Old World | 2 | 0.16 | 0.32 |
Johntravels1 | 2022 | 334065 | Verdant | 3 | 0.10 | 0.03 |
Johntravels1 | 2022 | 295770 | Frosthaven | 4 | 0.07 | 0.13 |
Johntravels1 | 2022 | 321608 | Hegemony: Lead Your Class to Victory | 5 | 0.07 | 0.02 |
Johntravels1 | 2022 | 322289 | Darwin's Journey | 6 | 0.05 | 0.05 |
Johntravels1 | 2022 | 320718 | Hidden Leaders | 7 | 0.04 | 0.04 |
Johntravels1 | 2022 | 304051 | Creature Comforts | 8 | 0.04 | 0.07 |
Johntravels1 | 2022 | 305096 | Endless Winter: Paleoamericans | 9 | 0.03 | 0.09 |
Johntravels1 | 2022 | 348463 | ECO: Coral Reef | 10 | 0.03 | 0.02 |
Johntravels1 | 2022 | 342246 | Feuding Foodies | 11 | 0.03 | 0.02 |
Johntravels1 | 2022 | 305462 | The Age of Atlantis | 12 | 0.02 | 0.03 |
Johntravels1 | 2022 | 339592 | Sheep in Disguise | 13 | 0.02 | 0.01 |
Johntravels1 | 2022 | 336986 | Flamecraft | 14 | 0.02 | 0.04 |
Johntravels1 | 2022 | 273814 | Deliverance | 15 | 0.01 | 0.02 |
Johntravels1 | 2022 | 287871 | Hybris: Disordered Cosmos | 16 | 0.01 | 0.01 |
Johntravels1 | 2022 | 267609 | Guards of Atlantis II: Tabletop MOBA | 17 | 0.01 | 0.01 |
Johntravels1 | 2022 | 303731 | Primal: The Awakening | 18 | 0.01 | 0.02 |
Johntravels1 | 2022 | 313065 | Transmissions | 19 | 0.01 | 0.01 |
Johntravels1 | 2022 | 295895 | Distilled | 20 | 0.01 | 0.01 |
Johntravels1 | 2022 | 315610 | Massive Darkness 2: Hellscape | 21 | 0.01 | 0.01 |
Johntravels1 | 2022 | 331401 | Dog Park | 22 | 0.01 | 0.01 |
Johntravels1 | 2022 | 322589 | Zapotec | 23 | 0.01 | 0.01 |
Johntravels1 | 2022 | 284118 | Mechanical Beast | 24 | 0.01 | 0.01 |
Johntravels1 | 2022 | 317511 | Tindaya | 25 | 0.01 | 0.05 |